UAlberta to Push Critical Areas of Research for the Future of All Canadians

EDMONTON (March 23, 2017)—In a move that will boost artificial intelligence (AI) research across the country, the Government of Canada announced Wednesday the funding of a pan-Canadian AI Strategy to enhance research and recruit talent. Administered through the Canadian Institute for Advanced Research (CIFAR), the $125 million program will promote collaboration between post-secondary institutions in Montréal, Toronto-Waterloo, and Edmonton.

“Our University of Alberta researchers have been world leaders in artificial intelligence for decades. I’m very pleased the government has moved forward and invested in this absolutely critical area for the future of all Canadians,” says University of Alberta President David Turpin.

With applications as diverse as enhanced medical diagnoses to self-driving cars, artificial intelligence is a continually growing area of research with the potential to transform all facets of society. The field already attracts investment from major technology players like Google, Facebook and Amazon. The global market for artificial intelligence-related products is expected to reach $47 billion by 2020.

“Canadian universities train some of the best AI researchers in the world,” says Cameron Schuler, Executive Director of the Alberta Machine Intelligence Institute (Amii), housed at the University of Alberta. “With this latest investment, Canada will build on existing strengths to retain and attract talented individuals, drive innovation and advances in industry, and take our place on the global stage as leaders in AI.”

The strategy aims to further develop Canada’s AI ecosystem and position the country as a world-leading destination for companies seeking to invest in artificial intelligence and innovation. “This investment in deep AI builds on Canada’s strength as a pioneer in AI research and will provide a strong foundation for Canada to build on its global leadership in this important and exciting field,” says Alan Bernstein, President and CEO of CIFAR.

In addition to retaining top talent, enhancing recruitment and training across Canada, the new funding will enable further collaborations between industry and academic institutions. Some of the recent industry collaborations at the University of Alberta include research partnerships, with large companies like RBC, and project-based ones, such as optimizing control systems with Edmonton-based companies like ISL Engineering and Willowglen Systems.

“There is some truly fascinating AI research coming out of Canada,” says Richard Sutton, professor of computing science in the University of Alberta’s Faculty of Science and researcher at Amii, world-renowned for his boundary pushing research in reinforcement learning. “Canada is punching above its weight in the field, and we’re thrilled the federal government is committed to building on this strong base. We’ve only scratched the surface of what AI can do and are excited to unleash even greater possibilities in deep reinforcement learning.”

Skill Trumps Luck: DeepStack the First Computer Program to Outplay Human Professionals at Heads-Up No-Limit Texas Hold’em Poker

EDMONTON (March 2, 2017)—A team of computing scientists from the University of Alberta’s Computer Poker Research Group is once again capturing the world’s collective fascination with artificial intelligence. In a historic result for the flourishing AI research community, the team—which includes researchers from Charles University and Czech Technical University in Prague—has developed an AI system called DeepStack that defeated professional poker players in December 2016.  The landmark findings have just been published in Science, one of the world’s most prestigious peer-reviewed scientific journals.

DeepStack bridges the gap between approaches used for games of perfect information—like those used in checkers, chess, and Go—with those used for imperfect information games, reasoning while it plays using “intuition” honed through deep learning to reassess its strategy with each decision.

“Poker has been a longstanding challenge problem in artificial intelligence,” says Michael Bowling, professor in the University of Alberta’s Faculty of Science and principal investigator on the study. “It is the quintessential game of imperfect information in the sense that the players don’t have the same information or share the same perspective while they’re playing.”

Don’t let the name fool you: imperfect information games are serious business. These “games” are a general mathematical model that describe how decision-makers interact. Artificial intelligence research has a storied history of using parlour games to study these models, but attention has been focused primarily on perfect information games. “We need new AI techniques that can handle cases where decision-makers have different perspectives,” says Bowling, explaining that developing techniques to solve imperfect information games will have applications well beyond the poker table.

“Think of any real world problem. We all have a slightly different perspective of what’s going on, much like each player only knowing their own cards in a game of poker.” Immediate applications include making robust medical treatment recommendations, strategic defense planning, and negotiation.

This latest discovery builds on an already impressive body of research findings about artificial intelligence and imperfect information games that stretches back to the creation of the University of Alberta’s Computer Poker Research Group in 1996. Bowling, who became the group’s principal investigator in 2006, has led the group to several milestones for artificial intelligence. He and his colleagues developed Polaris in 2008, beating top poker players at heads-up limit Texas hold’em poker. They then went on to solve heads-up limit hold’em with Cepheus, published in 2015 in Science.

DeepStack extends the ability to think about each situation during play—which has been famously successful in games like checkers, chess, and Go—to imperfect information games using a technique called continual re-solving. This allows DeepStack to determine the correct strategy for a particular poker situation without thinking about the entire game by using its “intuition” to evaluate how the game might play out in the near future.

“We train our system to learn the value of situations,” says Bowling. “Each situation itself is a mini poker game. Instead of solving one big poker game, it solves millions of these little poker games, each one helping the system to refine its intuition of how the game of poker works.  And this intuition is the fuel behind how DeepStack plays the full game.”

Thinking about each situation as it arises is important for complex problems like heads-up no-limit hold’em, which has vastly more unique situations than there are atoms in the universe, largely due to players’ ability to wager different amounts including the dramatic “all-in.” Despite the game’s complexity, DeepStack takes action at human speed—with an average of only three seconds of “thinking” time—and can run on a simple gaming laptop using an Nvidia GPU for computation.

To test the approach, DeepStack played against a pool of professional poker players in December, 2016, recruited by the International Federation of Poker. Thirty-three players from 17 countries were recruited, with each asked to play a 3000-hand match over a period of four weeks. DeepStack beat each of the 11 players who finished their match, with only one outside the margin of statistical significance, making it the first computer program to beat professional players in heads-up no-limit Texas hold’em poker.

“DeepStack: Expert-Level Artificial Intelligence in No-Limit Poker” was published online by the journal Science on Thursday, March 2, 2017.