(Amii’s Russ Greiner is part of a team of researchers from the University of Alberta and IBM who are using machine learning to help predict  schizophrenia .)

Pioneering research in “computational psychiatry” uses AI to explore disease prediction and assessment

IBM (NYSE: IBM) scientists and the University of Alberta in Edmonton, Canada, have published new data in Nature‘s partner journal, Schizophrenia, demonstrating that AI and machine learning algorithms helped predict instances of schizophrenia with 74% accuracy. This retrospective analysis also showed the technology predicted the severity of specific symptoms in schizophrenia patients with significant correlation, based on correlations between activity observed across different regions of the brain. This pioneering research could also help scientists identify more reliable objective neuroimaging biomarkers that could be used to predict schizophrenia and its severity.

Schizophrenia is a chronic and debilitating neurological disorder that affects 7 or 8 out of every 1,000 people. Those with schizophrenia can experience hallucinations, delusions or thought disorders, along with cognitive impairments, such as an inability to pay attention and physical impairments, such as movement disorders.

“This unique, innovative multidisciplinary approach opens new insights and advances our understanding of the neurobiology of schizophrenia, which may help to improve the treatment and management of the disease,” says Dr. Serdar Dursun, a Professor of Psychiatry & Neuroscience with the University of Alberta. “We’ve discovered a number of significant abnormal connections in the brain that can be explored in future studies, and AI-created models bring us one step closer to finding objective neuroimaging-based patterns that are diagnostic and prognostic markers of schizophrenia.”

In the paper, researchers analyzed de-identified brain functional Magnetic Resonance Imaging (fMRI) data from the open data set, Function Biomedical Informatics Research Network (fBIRN) for patients with schizophrenia and schizoaffective disorders, as well as a healthy control group. fMRI measures brain activity through blood flow changes in particular areas of the brain. Specifically, the fBIRN data set reflects research done on brain networks at different levels of resolution, from data gathered while study participants conducted a common auditory test. Examining scans from 95 participants, researchers used machine learning techniques to develop a model of schizophrenia that identifies the connections in the brain most associated with the illness.

Regions of the brain that showed a statistically significant difference between patients with schizophrenia and patients without it. (Arrow 1 identifies the precentral gyrus, or the motor cortex, and arrow 5 marks the precuneus, which involves processing visual information.)

The results of the IBM and University of Alberta research demonstrated that, even on more challenging neuroimaging data collected from multiple sites (different machines, across different groups of subjects etc.) the machine learning algorithm was able to discriminate between patients with schizophrenia and the control group with 74% accuracy using the correlations in activity across different areas of the brain.

Additionally, the research showed that functional network connectivity could also help determine the severity of several symptoms after they have manifested in the patient, including inattentiveness, bizarre behavior and formal thought disorder, as well as alogia, (poverty of speech) and lack of motivation. The prediction of symptom severity could lead to a more quantitative, measurement-based characterization of schizophrenia; viewing the disease on a spectrum, as opposed to a binary label of diagnosis or non-diagnosis. This objective, data-driven approach to severity analysis could eventually help clinicians identify treatment plans that are customized to the individual.

“The ultimate goal of this research effort is to identify and develop objective, data-driven measures for characterizing mental states, and apply them to psychiatric and neurological disorders” said Ajay Royyuru, Vice President of Healthcare & Life Sciences, IBM Research. “We also hope to offer new insights into how AI and machine learning can be used to analyze psychiatric and neurological disorders to aid psychiatrists in their assessment and treatment of patients.”

The Research Domain Criteria (RDoC) initiative of NIMH emphasizes the importance of objective measurements in psychiatry. This field, often referred to as “computational psychiatry”, aims to use modern technology and data driven approaches to improve evidence-based medical decision making in psychiatry, a field that often relies upon subjective evaluation approaches.

As part of the ongoing partnership, researchers will continue to investigate areas and connections in the brain that hold significant links to schizophrenia. Work will continue on improving the algorithms by conducting machine learning analysis on larger datasets, and by exploring ways to extend these techniques to other psychiatric disorders such as depression or post-traumatic stress disorder.

UAlberta Expertise Brings DeepMind Lab to Edmonton

In an historic move for the AI community, one of the world’s leading AI research companies, DeepMind, will open its first international research base outside the United Kingdom later this month. The lab will be based in Edmonton and have close ties to the University of Alberta, a research-intensive university with an illustrious record of AI research excellence.

The new lab, to be called DeepMind Alberta, demonstrates DeepMind’s commitment to accelerating Alberta’s and Canada’s AI research community. It also signals the strength of ties between the University of Alberta and one of the world’s leading AI companies. Having been acquired by Google in 2014, DeepMind is now part of Alphabet. DeepMind is on a scientific mission to push the boundaries of AI, developing programs that can learn to solve complex problems without being taught how. DeepMind Alberta will open with 10 employees.

The DeepMind Alberta team will be led by UAlberta computing science professors Richard Sutton, Michael Bowling, and Patrick Pilarski. All three, who will remain with the Alberta Machine Intelligence Institute at UAlberta, will also continue teaching and supervising graduate students at the university to further foster the Canadian AI talent pipeline and grow the country’s technology ecosystem. The team will be completed by seven more researchers, many of whom were also authors on the influential DeepStack paper published earlier this year in Science.

UAlberta’s connections to DeepMind run deep with roughly a dozen UAlberta alumni already working at the company, some of whom played important roles in some of DeepMind’s signature advances with reinforcement learning in AlphaGo and Atari. In addition, one of the world’s most renowned computing scientists, Sutton was DeepMind’s first advisor when the company was just a handful of people.

“I first met with Rich—our first ever advisor—seven years ago when DeepMind was just a handful of people with a big idea. He saw our potential and encouraged us from day one. So when we chose to set up our first international AI research office, the obvious choice was his base in Edmonton, in close collaboration with the University of Alberta, which has become a leader in reinforcement learning research thanks to his pioneering work,” said Demis Hassabis, CEO and co-founder of DeepMind. “I am very excited to be working with Rich, Mike, Patrick and their team, together with UAlberta, and I look forward to us making many more scientific breakthroughs together in the years ahead.”

Sutton is excited about the opportunity to combine the strength of DeepMind’s work in reinforcement learning with UAlberta’s academic excellence, all without having to leave Edmonton.

“DeepMind has taken this reinforcement learning approach right from the very beginning, and the University of Alberta is the world’s academic leader in reinforcement learning, so it’s very natural that we should work together,” said Sutton. “And as a bonus, we get to do it without moving.”

Working with Hassabis and the DeepMind team both in London and Edmonton, Sutton, Bowling, and Pilarski will combine their staggering academic strength in reinforcement learning to focus on basic AI research. Reinforcement learning functions similarly to the same way humans learn, trying to replicate good outcomes and avoid bad outcomes based on learned experiences.

The DeepMind Alberta announcement is the latest in a slate of AI-related successes for UAlberta. The recent major funding infusion via the federal government’s Pan-Canadian Artificial Intelligence Strategy strengthens the Alberta government’s 15-year investment of more than $40 million. DeepMind Alberta is a further signal that industry is taking notice of UAlberta and its boundary-pushing research.

About the Researchers

A professor in the Department of Computing Science in the University of Alberta’s Faculty of Science, Michael Bowling is best known for his research in poker, most notably with two milestone discoveries, both published in Science, Cepheus in 2015, which solved heads-up limit Texas hold’em followed by DeepStack in late 2016, which achieves professional-level play in heads-up no limit Texas hold’em.

Patrick Pilarski is the Canada Research Chair in Machine Intelligence for Rehabilitation and an assistant professor in the Department of Medicine (Division of Physical Medicine and Rehabilitation). His research interests include reinforcement learning, real-time machine learning, human-machine interaction, rehabilitation technology, and assistive robotics.

A professor in the Department of Computing Science in the University of Alberta’s Faculty of Science, Richard Sutton is world-renowned for his foundational research in reinforcement learning –he literally wrote the textbook–in which machines learn based on their environment. His landmark work has developed the area of temporal difference learning, which uses the future as a source of information for predictions, and also explores off-policy learning, or learning from actions not taken.

University of Alberta computing science professors and artificial intelligence researchers (L to R) Richard Sutton, Michael Bowling, and Patrick Pilarski are working with DeepMind to open the AI powerhouse company’s first research lab outside the United Kingdom in Edmonton, Canada.
Credit: John Ulan