Research Post

The challenge of predicting blood glucose concentration changes in patients with type I diabetes


Patients with Type I Diabetes (T1D) must take insulin injections to prevent the serious long term effects of hyperglycemia. They must also be careful not to inject too much insulin because this could induce (potentially fatal) hypoglycemia. Patients therefore follow a “regimen” that determines how much insulin to inject at each time, based on various measurements. We can produce an effective regimen if we can accurately predict a patient’s future blood glucose (BG) values from his/her current features. This study explores the challenges of predicting future BG by applying a number of machine learning algorithms, as well as various data preprocessing variations (corresponding to 312 [learner, preprocessed-dataset] combinations), to a new T1D dataset that contains 29,601 entries from 47 different patients. Our most accurate predictor, a weighted ensemble of two Gaussian Process Regression models, achieved a (cross-validation) 𝑒𝑟𝑟𝐿1errL1 loss of 2.7 mmol/L (48.65 mg/dl). This result was unexpectedly poor given that one can obtain an 𝑒𝑟𝑟𝐿1errL1 of 2.9 mmol/L (52.43 mg/dl) using the naive approach of simply predicting the patient’s average BG. These results suggest that the diabetes diary data that is typically collected may be insufficient to produce accurate BG prediction models; additional data may be necessary to build accurate BG prediction models over hours.

Latest Research Papers

Connect with the community

Get involved in Alberta's growing AI ecosystem! Speaker, sponsorship, and letter of support requests welcome.

Explore training and advanced education

Curious about study options under one of our researchers? Want more information on training opportunities?

Harness the potential of artificial intelligence

Let us know about your goals and challenges for AI adoption in your business. Our Investments & Partnerships team will be in touch shortly!