Research Post

An implicit function learning approach for parametric modal regression


For multi-valued functions---such as when the conditional distribution on targets given the inputs is multi-modal---standard regression approaches are not always desirable because they provide the conditional mean. Modal regression algorithms address this issue by instead finding the conditional mode(s). Most, however, are nonparametric approaches and so can be difficult to scale. Further, parametric approximators, like neural networks, facilitate learning complex relationships between inputs and targets. In this work, we propose a parametric modal regression algorithm. We use the implicit function theorem to develop an objective, for learning a joint function over inputs and targets. We empirically demonstrate on several synthetic problems that our method (i) can learn multi-valued functions and produce the conditional modes, (ii) scales well to high-dimensional inputs, and (iii) can even be more effective for certain uni-modal problems, particularly for high-frequency functions. We demonstrate that our method is competitive in a real-world modal regression problem and two regular regression datasets.

Latest Research Papers

Connect with the community

Get involved in Alberta's growing AI ecosystem! Speaker, sponsorship, and letter of support requests welcome.

Explore training and advanced education

Curious about study options under one of our researchers? Want more information on training opportunities?

Harness the potential of artificial intelligence

Let us know about your goals and challenges for AI adoption in your business. Our Investments & Partnerships team will be in touch shortly!