Research Post
Rapid development in computer technology has led to sophisticated methods of analyzing large datasets with the aim of improving human decision making. Artificial Intelligence and Machine Learning (ML) approaches hold tremendous potential for solving complex real-world problems such as those faced by stakeholders attempting to prevent work disability. These techniques are especially appealing in work disability contexts that collect large amounts of data such as workers’ compensation settings, insurance companies, large corporations, and health care organizations, among others. However, the approaches require thorough evaluation to determine if they add value to traditional statistical approaches. In this special series of articles, we examine the role and value of ML in the field of work disability prevention and occupational rehabilitation.
Feb 15th 2022
Research Post
Read this research paper, co-authored by Amii Fellow and Canada CIFAR AI Chair Osmar Zaiane: UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-Wise Perspective with Transformer
Jun 1st 2021
Research Post
May 1st 2021
Research Post
Looking to build AI capacity? Need a speaker at your event?