Research Post

Motion Annotation Programs: A Scalable Approach to Annotating Kinematic. Articulations in Large 3D Shape Collections


3D models of real-world objects are essential for many applications, including the creation of virtual environments for AI training. To mimic real-world objects in these applications, objects must be annotated with their kinematic mobilities. Annotating kinematic motions is time-consuming, and it is not well-suited to typical crowdsourcing workflows due to the significant domain expertise required. In this paper, we present a system that helps individual expert users rapidly annotate kinematic motions in large 3D shape collections. The organizing concept of our system is motion annotation programs: simple, re-usable procedural rules that generate motion for a given input shape. Our interactive system allows users to author these rules and quickly apply them to collections of functionally-related objects. Using our system, an expert annotated over 1000 joints in under 3 hours. In a user study, participants with no prior experience with our system were able to annotate motions 1.5x faster than with a baseline manual annotation tool.

Latest Research Papers

Connect with the community

Get involved in Alberta's growing AI ecosystem! Speaker, sponsorship, and letter of support requests welcome.

Explore training and advanced education

Curious about study options under one of our researchers? Want more information on training opportunities?

Harness the potential of artificial intelligence

Let us know about your goals and challenges for AI adoption in your business. Our Investments & Partnerships team will be in touch shortly!