Research Post

Parameterless Transductive Feature Re-representation for Few-Shot Learning


Recent literature in few-shot learning (FSL) has shown that transductive methods often outperform their inductive counterparts. However, most transductive solutions, particularly the meta-learning based ones, require inserting trainable parameters on top of some inductive baselines to facilitate transduction. In this paper, we propose a parameterless transductive feature re-representation framework that differs from all existing solutions from the following perspectives. (1) It is widely compatible with existing FSL methods, including meta-learning and fine tuning based models. (2) The framework is simple and introduces no extra training parameters when applied to any architecture. We conduct experiments on three benchmark datasets by applying the framework to both representative meta-learning baselines and state-of-the-art FSL methods. Our framework consistently improves performances in all experiments and refreshes the state-of-the-art FSL results.

Latest Research Papers

Connect with the community

Get involved in Alberta's growing AI ecosystem! Speaker, sponsorship, and letter of support requests welcome.

Explore training and advanced education

Curious about study options under one of our researchers? Want more information on training opportunities?

Harness the potential of artificial intelligence

Let us know about your goals and challenges for AI adoption in your business. Our Investments & Partnerships team will be in touch shortly!