Research Post
We present ShapeNet: a richly-annotated, large-scale repository of shapes represented by 3D CAD models of objects. ShapeNet contains 3D models from a multitude of semantic categories and organizes them under the WordNet taxonomy. It is a collection of datasets providing many semantic annotations for each 3D model such as consistent rigid alignments, parts and bilateral symmetry planes, physical sizes, keywords, as well as other planned annotations. Annotations are made available through a public web-based interface to enable data visualization of object attributes, promote data-driven geometric analysis, and provide a large-scale quantitative benchmark for research in computer graphics and vision. At the time of this technical report, ShapeNet has indexed more than 3,000,000 models, 220,000 models out of which are classified into 3,135 categories (WordNet synsets). In this report we describe the ShapeNet effort as a whole, provide details for all currently available datasets, and summarize future plans.
Feb 14th 2022
Research Post
Read this research paper, co-authored by Amii Fellows and Canada CIFAR AI Chairs Osmar Zaïane,and Lili Mou, Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision
Feb 14th 2022
Research Post
Read this research paper, co-authored by Amii Fellow and Canada CIFAR AI Chair Lili Mou: Search and Learn: Improving Semantic Coverage for Data-to-Text Generation
Feb 14th 2022
Research Post
Read this research paper, co-authored by Amii Fellow and Canada CIFAR AI Chair Lili Mou: Generalized Equivariance and Preferential Labeling for GNN Node Classification
Looking to build AI capacity? Need a speaker at your event?