Research Post
Bootstrapping provides a flexible and effective approach for assessing the quality of batch reinforcement learning, yet its theoretical properties are poorly understood. In this paper, we study the use of bootstrapping in off-policy evaluation (OPE), and in particular, we focus on the fitted Q-evaluation (FQE) that is known to be minimax-optimal in the tabular and linear-model cases. We propose a bootstrapping FQE method for inferring the distribution of the policy evaluation error and show that this method is asymptotically efficient and distributionally consistent for off-policy statistical inference. To overcome the computation limit of bootstrapping, we further adapt a subsampling procedure that improves the runtime by an order of magnitude. We numerically evaluate the bootrapping method in classical RL environments for confidence interval estimation, estimating the variance of off-policy evaluator, and estimating the correlation between multiple off-policy evaluators.
Jan 31st 2023
Research Post
Jan 20th 2023
Research Post
Aug 8th 2022
Research Post
Read this research paper co-authored by Canada CIFAR AI Chair Angel Chang: Learning Expected Emphatic Traces for Deep RL
Looking to build AI capacity? Need a speaker at your event?