Research Post
We develop a classification algorithm for estimating posterior distributions from positive-unlabeled data, that is robust to noise in the positive labels and effective for high-dimensional data. In recent years, several algorithms have been proposed to learn from positive-unlabeled data; however, many of these contributions remain theoretical, performing poorly on real high-dimensional data that is typically contaminated with noise. We build on this previous work to develop two practical classification algorithms that explicitly model the noise in the positive labels and utilize univariate transforms built on discriminative classifiers. We prove that these univariate transforms preserve the class prior, enabling estimation in the univariate space and avoiding kernel density estimation for high-dimensional data. The theoretical development and parametric and nonparametric algorithms proposed here constitute an important step towards wide-spread use of robust classification algorithms for positive-unlabeled data.
Feb 15th 2022
Research Post
Read this research paper, co-authored by Amii Fellow and Canada CIFAR AI Chair Adam White: Learning Expected Emphatic Traces for Deep RL
Feb 15th 2022
Research Post
Read this research paper, co-authored by Canada CIFAR AI Chair Kevin Leyton-Brown: The Perils of Learning Before Optimizing
Feb 14th 2022
Research Post
Read this research paper, co-authored by Amii Fellows and Canada CIFAR AI Chairs Osmar Zaïane,and Lili Mou, Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision
Looking to build AI capacity? Need a speaker at your event?