Research Post

Homonymy and Polysemy Detection with Multilingual Information


Deciding whether a semantically ambiguous word is homonymous or polysemous is equivalent to establishing whether it has any pair of senses that are semantically unrelated. We present novel methods for this task that leverage information from multilingual lexical resources. We formally prove the theoretical properties that provide the foundation for our methods. In particular, we show how the One Homonym Per Translation hypothesis of Hauer and Kondrak (2020a) follows from the synset properties formulated by Hauer and Kondrak (2020b). Experimental evaluation shows that our approach sets a new state of the art for homonymy detection.

Latest Research Papers

Connect with the community

Get involved in Alberta's growing AI ecosystem! Speaker, sponsorship, and letter of support requests welcome.

Explore training and advanced education

Curious about study options under one of our researchers? Want more information on training opportunities?

Harness the potential of artificial intelligence

Let us know about your goals and challenges for AI adoption in your business. Our Investments & Partnerships team will be in touch shortly!