Research Post

Learning under Invariable Bayesian Safety


A recent body of work addresses safety constraints in explore-and-exploit systems. Such constraints arise where, for example, exploration is carried out by individuals whose welfare should be balanced with overall welfare. In this paper, we adopt a model inspired by recent work on a bandit-like setting for recommendations. We contribute to this line of literature by introducing a safety constraint that should be respected in every round and determines that the expected value in each round is above a given threshold. Due to our modeling, the safe explore-and-exploit policy deserves careful planning, or otherwise, it will lead to sub-optimal welfare. We devise an asymptotically optimal algorithm for the setting and analyze its instance-dependent convergence rate.

Latest Research Papers

Connect with the community

Get involved in Alberta's growing AI ecosystem! Speaker, sponsorship, and letter of support requests welcome.

Explore training and advanced education

Curious about study options under one of our researchers? Want more information on training opportunities?

Harness the potential of artificial intelligence

Let us know about your goals and challenges for AI adoption in your business. Our Investments & Partnerships team will be in touch shortly!