Research Post

Minimizing finite sums with the stochastic average gradient

We analyze the stochastic average gradient (SAG) method for optimizing the sum of a finite number of smooth convex functions. Like stochastic gradient (SG) methods, the SAG method’s iteration cost is independent of the number of terms in the sum. However, by incorporating a memory of previous gradient values the SAG method achieves a faster convergence rate than black-box SG methods. The convergence rate is improved from 𝑂(1/𝑘‾‾√)O(1/k) to O(1 / k) in general, and when the sum is strongly-convex the convergence rate is improved from the sub-linear O(1 / k) to a linear convergence rate of the form 𝑂(𝜌𝑘)O(ρk) for 𝜌<1ρ<1. Further, in many cases the convergence rate of the new method is also faster than black-box deterministic gradient methods, in terms of the number of gradient evaluations. This extends our earlier work Le Roux et al. (Adv Neural Inf Process Syst, 2012), which only lead to a faster rate for well-conditioned strongly-convex problems. Numerical experiments indicate that the new algorithm often dramatically outperforms existing SG and deterministic gradient methods, and that the performance may be further improved through the use of non-uniform sampling strategies.


We would like to thank the anonymous reviewers for their many useful comments. This work was partially supported by the European Research Council (SIERRA-ERC-239993) and a Google Research Award. Mark Schmidt is also supported by a postdoctoral fellowship from the Natural Sciences and Engineering Research Council of Canada.

Latest Research Papers

Connect with the community

Get involved in Alberta's growing AI ecosystem! Speaker, sponsorship, and letter of support requests welcome.

Explore training and advanced education

Curious about study options under one of our researchers? Want more information on training opportunities?

Harness the potential of artificial intelligence

Let us know about your goals and challenges for AI adoption in your business. Our Investments & Partnerships team will be in touch shortly!