Research Post

Proposal-Based Instance Segmentation With Point Supervision


Instance segmentation methods often require costly per-pixel labels. We propose a method called WISE-Net that only requires point-level annotations. During training, the model only has access to a single pixel label per object, yet the task is to output full segmentation masks. To address this challenge, we construct a network with two branches: (1) a 10-calization network (L-Net) that predicts the location of each object; and (2) an embedding network (E-Net) that learns an embedding space where pixels of the same object are close. The segmentation masks for the located objects are obtained by grouping pixels with similar embeddings. We evaluate our approach on PASCAL VOC, COCO, KITTI and CityScapes datasets. The experiments show that our method (1) obtains competitive results compared to fully-supervised methods in certain scenarios; (2) outperforms fully-and weakly-supervised methods with a fixed annotation budget; and (3) establishes a first strong baseline for instance segmentation with point-level supervision.

Latest Research Papers

Connect with the community

Get involved in Alberta's growing AI ecosystem! Speaker, sponsorship, and letter of support requests welcome.

Explore training and advanced education

Curious about study options under one of our researchers? Want more information on training opportunities?

Harness the potential of artificial intelligence

Let us know about your goals and challenges for AI adoption in your business. Our Investments & Partnerships team will be in touch shortly!