Research Post
The rapid growth of research in explainable artificial intelligence (XAI) follows on two substantial developments. First, the enormous application success of modern machine learning methods, especially deep and reinforcement learning, which have created high expectations for industrial, commercial and social value. Second, the emergence of concern for creating trusted AI systems, including the creation of regulatory principles to ensure transparency and trust of AI systems.These two threads have created a kind of "perfect storm" of research activity, all eager to create and deliver it any set of tools and techniques to address the XAI demand. As some surveys of current XAI suggest, there is yet to appear a principled framework that respects the literature of explainability in the history of science, and which provides a basis for the development of a framework for transparent XAI. Here we intend to provide a strategic inventory of XAI requirements, demonstrate their connection to a history of XAI ideas, and synthesize those ideas into a simple framework to calibrate five successive levels of XAI.
Feb 15th 2022
Research Post
Read this research paper, co-authored by Amii Fellow and Canada CIFAR AI Chair Adam White: Learning Expected Emphatic Traces for Deep RL
Feb 15th 2022
Research Post
Read this research paper, co-authored by Canada CIFAR AI Chair Kevin Leyton-Brown: The Perils of Learning Before Optimizing
Feb 14th 2022
Research Post
Read this research paper, co-authored by Amii Fellows and Canada CIFAR AI Chairs Osmar Zaïane,and Lili Mou, Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision
Looking to build AI capacity? Need a speaker at your event?