Research Post

Where are the Blobs: Counting by Localization with Point Supervision

Object counting is an important task in computer vision due to its growing demand in applications such as surveillance, traffic monitoring, and counting everyday objects. State-of-the-art methods use regression-based optimization where they explicitly learn to count the objects of interest. These often perform better than detection-based methods that need to learn the more difficult task of predicting the location, size, and shape of each object. However, we propose a detectionbased method that does not need to estimate the size and shape of the objects and that outperforms regression-based methods. Our contributions are three-fold: (1) we propose a novel loss function that encourages the network to output a single blob per object instance using pointlevel annotations only; (2) we design two methods for splitting large predicted blobs between object instances; and (3) we show that our method achieves new state-of-the-art results on several challenging datasets including the Pascal VOC and the Penguins dataset. Our method even outperforms those that use stronger supervision such as depth features, multi-point annotations, and bounding-box labels.


We would like to thank the anonymous referees for their useful comments that significantly improved the paper. Issam Laradji is funded by the UBC Four-Year Doctoral Fellowships (4YF).

Latest Research Papers

Connect with the community

Get involved in Alberta's growing AI ecosystem! Speaker, sponsorship, and letter of support requests welcome.

Explore training and advanced education

Curious about study options under one of our researchers? Want more information on training opportunities?

Harness the potential of artificial intelligence

Let us know about your goals and challenges for AI adoption in your business. Our Investments & Partnerships team will be in touch shortly!